
©
 2012-2016 H

einz K
abutz, A

ll R
ights R

eserved
Finding and Solving Java Deadlocks - ECESCON9 2016 1

Finding and Solving
Java Deadlocks

Dr Heinz M. Kabutz  
heinz@kabutz.net  

@heinzkabutz  
Last Updated 20 April 2016

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Author of The Java Specialists' Newsletter
– Articles about advanced core Java programming

l http://www.javaspecialists.eu

Heinz Kabutz

2

©
 2012-2016 H

einz K
abutz, A

ll R
ights R

eserved
Finding and Solving Java Deadlocks - ECESCON9 2016 3

Introduction

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Three short lectures, each followed by a short lab
– https://github.com/kabutz/DeadlockLabECESCON9

• (or http://tinyurl.com/deadlocks2016)

l Fourth lab if we have time

Structure Of Hands-On Lab

4

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Please please please please ask questions!

l Interrupt us at any time
– This lab is on deadlocks, we need to keep focused in

available time

l The only stupid questions are those you do not ask
– Once you’ve asked them, they are not stupid anymore

l The more you ask, the more we all learn

Questions

5

©
 2012-2016 H

einz K
abutz, A

ll R
ights R

eserved
Finding and Solving Java Deadlocks - ECESCON9 2016 6

Avoiding Liveness
Hazards

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Fixing safety problems can cause liveness problems
– Don't indiscriminately sprinkle "synchronized" into your

code

Avoiding Liveness Hazards

7

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Lock-ordering deadlocks
– Typically when you lock two locks in different orders
– Requires global analysis to make sure your order is

consistent
• Lesson: only ever hold a single lock per thread!

Deadly Embrace

8

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l A deadly embrace amongst synchronized leaves no
way of recovery

– We have to restart the JVM

Thread Deadlocks in BLOCKED

9

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l This can happen with bounded queues or similar
mechanisms meant to bound resource consumption

Resource Deadlocks

10

©
 2012-2016 H

einz K
abutz, A

ll R
ights R

eserved
Finding and Solving Java Deadlocks - ECESCON9 2016 11

Lab 1: Deadlock
Resolution by Global

Ordering

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Classic problem is that of the "dining philosophers"
– We changed that to the "drinking philosophers"

• That is where the word "symposium" comes from
– sym - together, such as "symphony"
– poto - drink

• Ancient Greek philosophers used to get together to drink & think

l In our example, a philosopher needs two glasses to drink
– First he takes the right one, then the left one
– When he finishes drinking, he returns them and carries on

thinking

Lab 1: Deadlock Resolution By Global
Ordering

12

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Our philosopher needs two glasses to drink
– First he takes the right one, then the left one
– When he’s done, he returns the left and then the right
– returns them and carries on thinking

Our Drinking Philosophers

13

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Table Is Ready, All Philosophers Are
Thinking

14

1

25

4 3

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 5 Wants To Drink, Takes
Right Cup

15

1

25

4 3

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 5 Is Now Drinking With
Both Cups

16

1

25

4 3

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 Wants To Drink, Takes
Right Cup

17

1

25

4 3

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 Is Now Drinking With
Both Cups

18

1

25

4 3

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l But he has to wait for  
Philosopher 3 to  
finish his  
drinking  
session

Philosopher 2 Wants To Drink, Takes
Right Cup

19

1

25

4 3

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 Finished Drinking,
Returns Left Cup

20

1

25

4 3

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

1

5

4 3

2

Philosopher 3 Returns Right Cup

21

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 2 Is Now Drinking With
Both Cups

22

1

25

4 3

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l The standard rule is that every philosopher first
picks up the right cup, then the left

– If all of the philosophers want to drink and they all pick up
the right cup, then they all are holding one cup but cannot
get the left cup

Drinking Philosophers In Limbo

23

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

A Deadlock Can Easily Happen With
This Design

24

1

25

4 3

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 5 Wants To Drink, Takes
Right Cup

25

1

25

4 3

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 1 Wants To Drink, Takes
Right Cup

26

1

25

4 3

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 2 Wants To Drink, Takes
Right Cup

27

1

25

4 3

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 Wants To Drink, Takes
Right Cup

28

1

25

4 3

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 Wants To Drink, Takes
Right Cup

29

1

25

4 3

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l All the philosophers  
are waiting for their  
left cups, 
but they  
will never  
become  
available

Deadlock!

30

1

25

4 3

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l If all philosophers hold one cup, we deadlock
– In our solution, we have to prevent that from happening

Global Order With Boozing
Philosophers

31

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l We can solve the deadlock with the "dining
philosophers" by requiring that locks are always
acquired in a set order

– For example, we can make a rule that philosophers always
first take the cup with the largest number
• If it is not available, we block until it becomes available

– And return the cup with the lowest number first

Fixed Order Of Lock Acquisition

32

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l We start with all the  
philosophers thinking

Global Lock Ordering

33

1

25

4 3
4

3

21

5

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Cup 5 has higher  
number

– Remember our rule!

Philosopher 5 Takes Cup 5

34

1

25

4 3
4

3

2

5

1

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Must take the cup with 
the higher number  
first

– In this case  
cup 2

Philosopher 1 Takes Cup 2

35

1

25

4 3
4

3

2

5

1

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 2 Takes Cup 3

36

1

25

4 3
4

3

2

5

1

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Note that philosopher 4  
is prevented from  
holding one cup

Philosopher 3 Takes Cup 4

37

1

25

4 34

3

2

5

1

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 1 Takes Cup 1 - Drinking

38

1

25

4 34

3

2

5

1

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Cups are returned in the  
opposite order to what  
they are acquired

Philosopher 1 Returns Cup 1

39

1

25

4 34

3

2

5

1

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 5 Takes Cup 1 - Drinking

40

1

25

4 34

3

2

5

1

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 5 Returns Cup 1

41

1

25

4 34

3

2

5

1

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 1 Returns Cup 2

42

1

25

4 34

3

2

5

1

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 2 Takes Cup 2 - Drinking

43

1

25

4 34

3

2

5

1

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 5 Returns Cup 5

44

1

25

4 34

3

2

5

1

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 Takes Cup 5

45

1

25

4 34

3

2

5

1

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 2 Returns Cup 2

46

1

25

4 34

2

5

1

3

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 2 Returns Cup 3

47

1

25

4 4

5

1 2

3

3

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 Takes Cup 3 - Drinking

48

1

25

4 34

3

2

5

1

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 Returns Cup 3

49

1

25

4 3

2

5

1

3

4

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 Returns Cup 4

50

1

25

3

2

5

1

4

4

3

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 Takes Cup 4 - Drinking

51

1

25

4 34

3

2

5

1

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 Returns Cup 4

52

1

25

4 3

3

21

4
5

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Deadlock free!

Philosopher 4 Returns Cup 5

53

1

25

4 3
4

3

2

5

1

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Impossible for all philosophers to hold one cup

Deadlock Is Avoided

54

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l JVisualVM is a tool for monitoring what the JVM is
doing

– Found in the JDK/bin  
directory

– Double-click on 
 application

Capturing A Stack Trace

55

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Click on "Thread Dump" button

Click On "Threads" Tab

56

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Stack Trace Shows What Threads Are
Doing

57

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

It Can Even Detect A Java-Level
Deadlock

58

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l For the hardcode geek, we have command line tools
– jps

• shows your Java process ids
– jstack pid

• shows what your JVM is currently doing
– Tools are in your jdk/bin directory

Tools jstack and jps

59

©
 2012-2016 H

einz K
abutz, A

ll R
ights R

eserved
Finding and Solving Java Deadlocks - ECESCON9 2016

Lab 1 Exercise

60

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l In our first lab, a bunch of philosophers (Thinker) are sitting around a table at their
symposium and are using two cups of wine (Krasi) to quench their thirst. Each of
them first grabs the left and then the right cup. If they all grab the right cup at the
same time, we will have some unhappy philosophers caught in limbo.

1. To run the code you can either use the run.bat file or mvn -Prun. To compile you can use
mvn install.

2. Run the code and verify that you see a deadlock by capturing a stack trace. Depending on
your machine, you might need a few runs to see the issue.

3. Once you have discovered the deadlock, verify that it involves the left and right locks.
4. Now define a global ordering for the locks. For example, you can either let Krasi implement

Comparable and give it a number to sort by, or you can use System.identityHashCode() to
be able to compare the cups. (Warning: Sadly, the identity hash code is not guaranteed to
be unique. Thus you have to plan for this. It is easier to make Krasi comparable.)

5. Verify that the deadlock has now disappeared.

l Good luck! You have 20 minutes to solve this lab.

Lab1 Exercise lab1/readme.txt 
http://tinyurl.com/deadlocks2016

61

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Goal: Prevent all philosophers from holding a single
cup

Lab1 Exercise Solution Explanation

62

1

25

4 3

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Goal: Prevent all philosophers from holding a single cup

l The set of first cups is 2,3,4,5
– This means that at most four philosophers can hold a single cup!

Lab1 Exercise Solution Explanation

63

Thinker Cup 1 
right

Cup 2 
left

1 1 2

2 2 3

3 3 4

4 4 5

5 5 1

Thinker Cup 1 
big

Cup 2 
small

1 2 1

2 3 2

3 4 3

4 5 4

5 5 1

©
 2012-2016 H

einz K
abutz, A

ll R
ights R

eserved
Finding and Solving Java Deadlocks - ECESCON9 2016

Lab 2: Deadlock
resolution by tryLock

Avoiding Liveness Hazards

64

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Same problem as in Lab 1

l But our solution will be different

l Instead of a global order on the locks
– We lock the first lock
– We then try to lock the second lock

• If we can lock it, we start drinking
• If we cannot, we back out completely and try again

– What about starvation or livelock?

Lab 2: Deadlock Resolution By Trylock

65

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l The Lock interface offers different ways of locking:
– Unconditional, polled, timed and interruptible

l Lock implementations must have same memory-visibility
semantics as intrinsic locks (synchronized)

Lock And Reentrantlock

66

public interface Lock {
 void lock();
 void lockInterruptibly() throws InterruptedException;
 boolean tryLock();
 boolean tryLock(long timeout, TimeUnit unit)
 throws InterruptedException;
 void unlock();
 Condition newCondition();
}

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Like synchronized, it offers reentrant locking
semantics

l Also, we can interrupt threads that are waiting for
locks

– Actually, the ReentrantLock never causes the thread to be
BLOCKED, but always WAITING

– If we try to acquire a lock unconditionally, interrupting the
thread will simply go back into the WAITING state
• Once the lock has been granted, the thread interrupts itself

Reentrantlock Implementation

67

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l We have to call unlock() in a finally block
– Every time, without exception
– There are FindBugs detectors that will look for forgotten

"unlocks"

Using The Explicit Lock

68

private final Lock lock = new ReentrantLock();
public void update() {
 lock.lock(); // this should be before try
 try {
 // update object state
 // catch exceptions and restore
 // invariants if necessary
 } finally {
 lock.unlock();
 }
}

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Instead of unconditional lock, we can tryLock()

Polled Lock Acquisition

69

if (lock.tryLock()) {
 try {
 balance = balance + amount;
 } finally {
 lock.unlock();
 }
} else {
 // alternative path
}

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Deadlocks happen when we lock multiple locks in
different orders

l We can avoid this by using tryLock()
– If we do not get lock, sleep for a random time and then try

again
– Must release all held locks, or our deadlocks become

livelocks

l This is possible with synchronized, see my newsletter
– http://www.javaspecialists.eu/archive/Issue194.html

Using Try-Lock To Avoid Deadlocks

70

©
 2012-2016 H

einz K
abutz, A

ll R
ights R

eserved

public void drink() {
 while (true) {
 right.lock();
 try {
 if (left.tryLock()) {
 try {
 // now we can finally drink and then return
 return;
 } finally {
 left.unlock();
 }
 }
 } finally {
 right.unlock();
 }
 LockSupport.parkNanos(System.nanoTime() & 0xffff);
 }
}

71Finding and Solving Java Deadlocks - ECESCON9 2016

Using Trylock() To Avoid Deadlocks

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Deadlock Is Prevented In This Design

72

1

25

4 3

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 5 Wants To Drink, Takes
Right Cup

73

1

25

4 3

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 1 Wants To Drink, Takes
Right Cup

74

1

25

4 3

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 2 Wants To Drink, Takes
Right Cup

75

1

25

4 3

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 Wants To Drink, Takes
Right Cup

76

1

25

4 3

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 Wants To Drink, Takes
Right Cup

77

1

25

4 3

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 Tries To Lock Left, Not
Available

78

1

25

4 3

X

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Now Philosopher 3 can 
drink

Philosopher 4 Unlocks Right Again

79

1

25

4 3

©
 2012-2016 H

einz K
abutz, A

ll R
ights R

eserved
Finding and Solving Java Deadlocks - ECESCON9 2016

Lab 2 Exercise
Deadlock resolution by tryLock

80

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

– Run Main class to trigger deadlock
• You might need a few runs

– Capture a stack trace with JVisualVM
– Verify the deadlock involves the left and right locks
– Use Lock.tryLock() to avoid blocking on the inner lock (forever)

• lock the right
• tryLock the left

– if success, then drink and unlock both
– otherwise, unlock right and retry

• Change the Thinker.java file
– Verify that the deadlock has now disappeared

Lab2 Exercise lab2/readme.txt 
http://tinyurl.com/deadlocks2016

81

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Goal: Prevent all philosophers from forever blocking
on the second cup

– A philosopher should not die of thirst
• We need to avoid livelocks
• lock/tryLock vs. tryLock/tryLock

Lab2 Exercise Solution Explanation

82

©
 2012-2016 H

einz K
abutz, A

ll R
ights R

eserved
Finding and Solving Java Deadlocks - ECESCON9 2016

Lab 3: Resource
Deadlock

Avoiding Liveness Hazards

83

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Problem: threads are blocked waiting for a finite
resource that never becomes available

l Examples:
– Resources not being released after use

• Running out of threads
• Java Semaphores not being released

– JDBC transactions getting stuck
– Bounded queues or thread pools getting jammed up

Lab 3: Resource Deadlock

84

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Does not show up as a Java thread deadlock

l Problem thread could be in any state: RUNNABLE,
WAITING, BLOCKED, TIMED_WAITING

Challenge

85

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Approach: If you can reproduce the resource deadlock
– Take a thread snapshot shortly before the deadlock
– Take another snapshot after the deadlock
– Compare the two snapshots

l Approach: If you are already deadlocked
– Take a few thread snapshots and look for threads that do not

move

l It is useful to identify the resource that is being
exhausted

– A good trick is via phantom references (beyond scope of this lab)

How To Solve Resource Deadlocks

86

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l We can also cause deadlocks waiting for resources

l For example, say you have two DB connection pools
– Some tasks might require connections to both databases
– Thus thread A might hold semaphore for D1 and wait for

D2, whereas thread B might hold semaphore for D2 and be
waiting for D1

l Thread dump and ThreadMXBean does not show
this as a deadlock!

Resource Deadlocks

87

©
 2012-2016 H

einz K
abutz, A

ll R
ights R

eserved

public class DatabasePool {
 private final Semaphore connections;
 public DatabasePool(int connections) {
 this.connections = new Semaphore(connections);
 }

 public void connect() {
 connections.acquireUninterruptibly();
 System.out.println("DatabasePool.connect");
 }

 public void disconnect() {
 System.out.println("DatabasePool.disconnect");
 connections.release();
 }
}

88Finding and Solving Java Deadlocks - ECESCON9 2016

Our Databasepool - Connect() And
Disconnect()

©
 2012-2016 H

einz K
abutz, A

ll R
ights R

eserved

DatabasePool.connect
DatabasePool.connect

89Finding and Solving Java Deadlocks - ECESCON9 2016

Threadmxbean Does Not Detect This
Deadlock

©
 2012-2016 H

einz K
abutz, A

ll R
ights R

eserved

public class DatabasePool {
 // ...

 public void connect() {
 connections.acquireUninterruptibly(); // line 12
 System.out.println("DatabasePool.connect");
 }
}

90Finding and Solving Java Deadlocks - ECESCON9 2016

Stack Trace Gives A Vector Into The
Code

©
 2012-2016 H

einz K
abutz, A

ll R
ights R

eserved
Finding and Solving Java Deadlocks - ECESCON9 2016

Lab 3 Exercise
Resource Deadlock

91

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

– Start our modified Java2Demo
– Connect JVisualVM  

and dump all threads
– Use Java2Demo for a while 

until it deadlocks
– Get another thread dump and  

compare to the first one
• This should show you where  

the problem is inside your code
– Fix the problem and verify that it has been solved

• Hint: Your colleagues probably write code like this, but you
shouldn't

Lab3 Exercise lab3/readme.txt 
http://tinyurl.com/deadlocks2016

92

http://tinyurl.com/deadlocks2016

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Goal: Ensure that resources are released after use

l Diff between the two thread dumps using jps and jstack

– Fault is probably in our classes, rather than JDK

Lab3 Exercise Solution Explanation

93

< at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(AbstractQueuedSynchronizer.java:2043)
< at java.awt.EventQueue.getNextEvent(EventQueue.java:531)
< at java.awt.EventDispatchThread.pumpOneEventForFilters(EventDispatchThread.java:213)

> at java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt(AbstractQueuedSynchronizer.java:834)
> at java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireSharedInterruptibly(AbstractQueuedSynchronizer.java:994)
> at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireSharedInterruptibly(AbstractQueuedSynchronizer.java:1303)
> at java.util.concurrent.Semaphore.acquire(Semaphore.java:317)
> at eu.javaspecialists.deadlock.lab3.java2d.MemoryManager.gc(MemoryManager.java:56)
> at eu.javaspecialists.deadlock.lab3.java2d.MemoryMonitor$Surface.paint(MemoryMonitor.java:153)

©
 2012-2016 H

einz K
abutz, A

ll R
ights R

eserved

/**
 * Only allow a maximum of 30 threads to call System.gc() at a time.
 */
public class MemoryManager extends Semaphore {
 private static final int MAXIMUM_NUMBER_OF_CONCURRENT_GC_CALLS = 30;

 public MemoryManager() {
 super(MAXIMUM_NUMBER_OF_CONCURRENT_GC_CALLS);
 }

 public void gc() {
 try {
 acquire();
 try {
 System.gc();
 } finally {
 System.out.println("System.gc() called");
 release();
 }
 } catch (Exception ex) {
 // ignore the InterruptedException
 }
 }
}

94Finding and Solving Java Deadlocks - ECESCON9 2016

What Is Wrong With This Code?

Calling System.gc() is baddd (but not the problem)

Empty catch block hides problem

©
 2012-2016 H

einz K
abutz, A

ll R
ights R

eserved
Finding and Solving Java Deadlocks - ECESCON9 2016

Lab 4: Combining Your
Skills

Avoiding Liveness Hazards

95

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Problem: try to solve lab 4 using the skills learned

l Be careful - it is not as easy as it looks :-)

l http://tinyurl.com/deadlocks2016

Lab 4: Combining Your Skills

96

©
 2012-2016 H

einz K
abutz, A

ll R
ights R

eserved
Finding and Solving Java Deadlocks - ECESCON9 2016

Lab 5: Speeding Up
Fibonacci

97

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Number sequence named after Leonardo of Pisa
– F0 = 0
– F1 = 1
– Fn = Fn-1 + Fn-2

l Thus the next number is  
equal to the sum of the  
two previous numbers

– e.g. 0, 1, 1, 2, 3, 5, 8, 13, 21, …

l The numbers get large very quickly

Lab 5: Speeding Up Fibonacci

98

8

13
21

2 3

5

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Taking our recursive definition
– F0 = 0, F1 = 1
– Fn = Fn-1 + Fn-2

l Our first attempt writes a basic recursive function

l But this has exponential time complexity
– f(n+10) is 1000 slower than f(n)

First Attempt At Writing A Fibonacci Method

99

public long f(int n) {
 if (n <= 1) return n;
 return f(n-1) + f(n-2);
}

8

13
21

2 3

5

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Instead of a recursive method, we use iteration:

l This algorithm has linear time complexity
– Solved f(1_000_000_000) in 1.7 seconds

• However, the numbers overflow so the result is incorrect
• We can use BigInteger, but its add() is also linear, so time is quadratic
• We need a better algorithm

2nd Attempt at Coding Fibonacci

100

public static long f(int n) {
 long n0 = 0, n1 = 1;
 for (int i = 0; i < n; i++) {
 long temp = n1;
 n1 = n1 + n0;
 n0 = temp;
 }
 return n0;
} 8

13
21

2 3

5

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Dijkstra noted the following formula for Fibonacci
– F2n-1 = Fn-12 + Fn2

– F2n = (2 × Fn-1 + Fn) × Fn

l Logarithmic time complexity and can be parallelized
– Java 8 uses better BigInteger multiply() algorithms

• Karatsuba complexity is O(n1.585)
• 3-way Toom Cook complexity is O(n1.465)
• Previous versions of Java had complexity O(n2)
• Unfortunately multiply() in BigInteger is only available

single-threaded - we’ll fix that in Lab 5.3

3rd Attempt Dijkstra's Sum of Squares

101

8

13
21

2 3

5

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Implement this algorithm using BigInteger
– F2n-1 = Fn-12 + Fn2

– F2n = (2 × Fn-1 + Fn) × Fn

l Run all tests in FibonacciTest and record the times

l Do it yourself - no cheating with Google!

Lab 5.1: Dijkstra’s Sum Of Squares

102

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l We can parallelize by using common Fork/Join Pool

l Next we fork() the 1st task, do the 2nd and then join 1st

Lab 5.2: Parallelize Your Algorithm

103

private final class FibonacciTask extends RecursiveTask<BigInteger> {
 private final int n;
 private FibonacciTask(int n) {
 this.n = n;
 }
 protected BigInteger compute() {
 return f(n);
 }
}

 FibonacciTask fn_1Task = new FibonacciTask(n - 1);
 fn_1Task.fork();
 BigInteger fn = f(n);
 BigInteger fn_1 = fn_1Task.join();

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Using principles from lab 5.2, parallelize methods in
eu.javaspecialists.performance.math.BigInteger

– multiplyKaratsuba()
– multiplyToomCook3()
– squareKaratsuba()
– squareToomCook3()

Lab 5.3: Parallelize Biginteger

104

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Dijkstra's Sum of Squares needs to work out some
values several times. Cache results to avoid this.

l Make sure you implement a “reserved caching
scheme” where if one thread says he wants to
calculate some value, others would wait

– e.g. have a special BigInteger that signifies RESERVED
• First thing a task would do is check if map contains that
• If it doesn’t, it puts it in and thus reserves it
• If it does, it waits until the task is done and uses that value

Lab 5.4: Cache Results

105

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l ForkJoinPool is configured with desired parallelism
– Number of active threads
– ForkJoinPool mostly used with CPU intensive tasks

l If one of the FJ Threads has to block, a new thread
can be started to take its place

– This is done with the ManagedBlocker

l Change your cache to use ManagedBlocker to keep
parallelism high

Lab 5.5: ManagedBlocker

106

©
 2012-2016 H

einz K
abutz, A

ll R
ights R

eserved
Finding and Solving Java Deadlocks - ECESCON9 2016

Wrap Up
Avoiding Liveness Hazards

107

Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Concurrency is difficult, but there are tools and
techniques that we can use to solve problems

l These are just a few that we use

l For more information, have a look at
– The Java Specialists' Newsletter

• http://www.javaspecialists.eu

l Made in Chania (mostly)

Conclusion On Deadlocks

108

©
 2012-2016 H

einz K
abutz, A

ll R
ights R

eserved
Finding and Solving Java Deadlocks - ECESCON9 2016

Finding and Solving
Java Deadlocks

Dr Heinz M. Kabutz  
heinz@kabutz.net  

@heinzkabutz

109

