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l Author of The Java Specialists' Newsletter 
– Articles about advanced core Java programming 

l http://www.javaspecialists.eu

Heinz Kabutz
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l Three short lectures, each followed by a short lab 
– https://github.com/kabutz/DeadlockLabECESCON9 

• (or http://tinyurl.com/deadlocks2016) 

l Fourth lab if we have time

Structure Of Hands-On Lab
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l Please please please please ask questions! 

l Interrupt us at any time 
– This lab is on deadlocks, we need to keep focused in 

available time 

l The only stupid questions are those you do not ask 
– Once you’ve asked them, they are not stupid anymore 

l The more you ask, the more we all learn

Questions
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Avoiding Liveness 
Hazards
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l Fixing safety problems can cause liveness problems 
– Don't indiscriminately sprinkle "synchronized" into your 

code

Avoiding Liveness Hazards
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l Lock-ordering deadlocks 
– Typically when you lock two locks in different orders 
– Requires global analysis to make sure your order is 

consistent 
• Lesson: only ever hold a single lock per thread!

Deadly Embrace
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l A deadly embrace amongst synchronized leaves no 
way of recovery 

– We have to restart the JVM

Thread Deadlocks in BLOCKED
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l This can happen with bounded queues or similar 
mechanisms meant to bound resource consumption

Resource Deadlocks
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Lab 1: Deadlock 
Resolution by Global 

Ordering
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l Classic problem is that of the "dining philosophers" 
– We changed that to the "drinking philosophers" 

• That is where the word "symposium" comes from 
– sym - together, such as "symphony" 
– poto - drink 

• Ancient Greek philosophers used to get together to drink & think 

l In our example, a philosopher needs two glasses to drink 
– First he takes the right one, then the left one 
– When he finishes drinking, he returns them and carries on 

thinking

Lab 1: Deadlock Resolution By Global 
Ordering
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l Our philosopher needs two glasses to drink 
– First he takes the right one, then the left one 
– When he’s done, he returns the left and then the right 
–  returns them and carries on thinking

Our Drinking Philosophers
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Table Is Ready, All Philosophers Are 
Thinking
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Philosopher 5 Wants To Drink, Takes 
Right Cup
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Philosopher 5 Is Now Drinking With 
Both Cups
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Philosopher 3 Wants To Drink, Takes 
Right Cup
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Philosopher 3 Is Now Drinking With 
Both Cups
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l But he has to wait for  
Philosopher 3 to  
finish his  
drinking  
session

Philosopher 2 Wants To Drink, Takes 
Right Cup
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Philosopher 3 Finished Drinking, 
Returns Left Cup
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1

5
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Philosopher 3 Returns Right Cup
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Philosopher 2 Is Now Drinking With 
Both Cups
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l The standard rule is that every philosopher first 
picks up the right cup, then the left 

– If all of the philosophers want to drink and they all pick up 
the right cup, then they all are holding one cup but cannot 
get the left cup

Drinking Philosophers In Limbo
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A Deadlock Can Easily Happen With 
This Design
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Philosopher 5 Wants To Drink, Takes 
Right Cup
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Philosopher 1 Wants To Drink, Takes 
Right Cup
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Philosopher 2 Wants To Drink, Takes 
Right Cup
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Philosopher 3 Wants To Drink, Takes 
Right Cup
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Philosopher 4 Wants To Drink, Takes 
Right Cup
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l All the philosophers  
are waiting for their  
left cups, 
but they  
will never  
become  
available

Deadlock!
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l If all philosophers hold one cup, we deadlock 
– In our solution, we have to prevent that from happening

Global Order With Boozing 
Philosophers
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l We can solve the deadlock with the "dining 
philosophers" by requiring that locks are always 
acquired in a set order 

– For example, we can make a rule that philosophers always 
first take the cup with the largest number 
• If it is not available, we block until it becomes available 

– And return the cup with the lowest number first

Fixed Order Of Lock Acquisition
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l We start with all the  
philosophers thinking

Global Lock Ordering
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l Cup 5 has higher  
number 

– Remember our rule!

Philosopher 5 Takes Cup 5
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l Must take the cup with 
the higher number  
first 

– In this case  
cup 2

Philosopher 1 Takes Cup 2
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Philosopher 2 Takes Cup 3
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l Note that philosopher 4  
is prevented from  
holding one cup

Philosopher 3 Takes Cup 4
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Philosopher 1 Takes Cup 1 - Drinking
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l Cups are returned in the  
opposite order to what  
they are acquired

Philosopher 1 Returns Cup 1
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Philosopher 5 Takes Cup 1 - Drinking
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Philosopher 5 Returns Cup 1
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Philosopher 1 Returns Cup 2
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Philosopher 2 Takes Cup 2 - Drinking
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Philosopher 5 Returns Cup 5
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Philosopher 4 Takes Cup 5
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Philosopher 2 Returns Cup 2
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Philosopher 2 Returns Cup 3
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Philosopher 3 Takes Cup 3 - Drinking
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Philosopher 3 Returns Cup 3
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Philosopher 3 Returns Cup 4
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Philosopher 4 Takes Cup 4 - Drinking
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Philosopher 4 Returns Cup 4
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l Deadlock free!

Philosopher 4 Returns Cup 5

53

1

25

4 3
4

3

2

5

1



Finding and Solving Java Deadlocks - ECESCON9 2016
©

 2012-2016 H
einz K

abutz, A
ll R

ights R
eserved

l Impossible for all philosophers to hold one cup

Deadlock Is Avoided
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l JVisualVM is a tool for monitoring what the JVM is 
doing 

– Found in the JDK/bin  
directory 

– Double-click on 
 application

Capturing A Stack Trace
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l Click on "Thread Dump" button

Click On "Threads" Tab
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Stack Trace Shows What Threads Are 
Doing
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It Can Even Detect A Java-Level 
Deadlock
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l For the hardcode geek, we have command line tools 
– jps  

• shows your Java process ids 
– jstack pid 

• shows what your JVM is currently doing 
– Tools are in your jdk/bin directory

Tools jstack and jps
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l In our first lab, a bunch of philosophers (Thinker) are sitting around a table at their 
symposium and are using two cups of wine (Krasi) to quench their thirst.  Each of 
them first grabs the left and then the right cup.  If they all grab the right cup at the 
same time, we will have some unhappy philosophers caught in limbo. 

1. To run the code you can either use the run.bat file or mvn -Prun. To compile you can use 
mvn install. 

2. Run the code and verify that you see a deadlock by capturing a stack trace.  Depending on 
your machine, you might need a few runs to see the issue. 

3. Once you have discovered the deadlock, verify that it involves the left and right locks. 
4. Now define a global ordering for the locks.  For example, you can either let Krasi implement 

Comparable and give it a number to sort by, or you can use System.identityHashCode() to 
be able to compare the cups.  (Warning: Sadly, the identity hash code is not guaranteed to 
be unique.  Thus you have to plan for this.  It is easier to make Krasi comparable.) 

5. Verify that the deadlock has now disappeared. 

l Good luck!  You have 20 minutes to solve this lab.

Lab1 Exercise lab1/readme.txt 
http://tinyurl.com/deadlocks2016
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l Goal: Prevent all philosophers from holding a single 
cup

Lab1 Exercise Solution Explanation

62
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l Goal: Prevent all philosophers from holding a single cup 

l The set of first cups is 2,3,4,5 
– This means that at most four philosophers can hold a single cup!

Lab1 Exercise Solution Explanation

63

Thinker Cup 1 
right

Cup 2 
left

1 1 2

2 2 3

3 3 4

4 4 5

5 5 1

Thinker Cup 1 
big

Cup 2 
small

1 2 1

2 3 2

3 4 3

4 5 4

5 5 1
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Lab 2: Deadlock 
resolution by tryLock

Avoiding Liveness Hazards
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l Same problem as in Lab 1 

l But our solution will be different 

l Instead of a global order on the locks 
– We lock the first lock 
– We then try to lock the second lock 

• If we can lock it, we start drinking 
• If we cannot, we back out completely and try again 

– What about starvation or livelock?

Lab 2: Deadlock Resolution By Trylock
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l The Lock interface offers different ways of locking:  
– Unconditional, polled, timed and interruptible 

l Lock implementations must have same memory-visibility 
semantics as intrinsic locks (synchronized)

Lock And Reentrantlock

66

public interface Lock { 
  void lock(); 
  void lockInterruptibly() throws InterruptedException; 
  boolean tryLock(); 
  boolean tryLock(long timeout, TimeUnit unit) 
    throws InterruptedException; 
  void unlock(); 
  Condition newCondition(); 
}
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l Like synchronized, it offers reentrant locking 
semantics 

l Also, we can interrupt threads that are waiting for 
locks 

– Actually, the ReentrantLock never causes the thread to be 
BLOCKED, but always WAITING 

– If we try to acquire a lock unconditionally, interrupting the 
thread will simply go back into the WAITING state 
• Once the lock has been granted, the thread interrupts itself

Reentrantlock Implementation
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l We have to call unlock() in a finally block 
– Every time, without exception 
– There are FindBugs detectors that will look for forgotten 

"unlocks"

Using The Explicit Lock

68

private final Lock lock = new ReentrantLock(); 
public void update() { 
  lock.lock(); // this should be before try 
  try { 
    // update object state 
    // catch exceptions and restore  
    // invariants if necessary 
  } finally { 
    lock.unlock(); 
  } 
}
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l Instead of unconditional lock, we can tryLock()

Polled Lock Acquisition

69

if (lock.tryLock()) { 
  try { 
    balance = balance + amount; 
  } finally { 
    lock.unlock(); 
  } 
} else { 
  // alternative path 
}
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l Deadlocks happen when we lock multiple locks in 
different orders 

l We can avoid this by using tryLock() 
– If we do not get lock, sleep for a random time and then try 

again 
– Must release all held locks, or our deadlocks become 

livelocks 

l This is possible with synchronized, see my newsletter 
– http://www.javaspecialists.eu/archive/Issue194.html

Using Try-Lock To Avoid Deadlocks
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public void drink() { 
  while (true) { 
    right.lock(); 
    try { 
      if (left.tryLock()) { 
        try { 
          // now we can finally drink and then return 
          return; 
        } finally { 
          left.unlock(); 
        } 
      } 
    } finally { 
      right.unlock(); 
    } 
    LockSupport.parkNanos(System.nanoTime() & 0xffff); 
  } 
}

71Finding and Solving Java Deadlocks - ECESCON9 2016

Using Trylock() To Avoid Deadlocks
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Deadlock Is Prevented In This Design
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Philosopher 5 Wants To Drink, Takes 
Right Cup
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Philosopher 1 Wants To Drink, Takes 
Right Cup
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Philosopher 2 Wants To Drink, Takes 
Right Cup
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Philosopher 3 Wants To Drink, Takes 
Right Cup
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Philosopher 4 Wants To Drink, Takes 
Right Cup
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Philosopher 4 Tries To Lock Left, Not 
Available
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l Now Philosopher 3 can 
drink

Philosopher 4 Unlocks Right Again
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Lab 2 Exercise
Deadlock resolution by tryLock
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– Run Main class to trigger deadlock 
• You might need a few runs 

– Capture a stack trace with JVisualVM 
– Verify the deadlock involves the left and right locks 
– Use Lock.tryLock() to avoid blocking on the inner lock (forever) 

• lock the right 
• tryLock the left 

– if success, then drink and unlock both 
– otherwise, unlock right and retry 

• Change the Thinker.java file 
– Verify that the deadlock has now disappeared

Lab2 Exercise lab2/readme.txt 
http://tinyurl.com/deadlocks2016
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l Goal: Prevent all philosophers from forever blocking 
on the second cup 

– A philosopher should not die of thirst 
• We need to avoid livelocks 
• lock/tryLock vs. tryLock/tryLock

Lab2 Exercise Solution Explanation
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Lab 3: Resource 
Deadlock

Avoiding Liveness Hazards
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l Problem: threads are blocked waiting for a finite 
resource that never becomes available 

l Examples: 
– Resources not being released after use 

• Running out of threads  
• Java Semaphores not being released 

– JDBC transactions getting stuck 
– Bounded queues or thread pools getting jammed up

Lab 3: Resource Deadlock
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l Does not show up as a Java thread deadlock 

l Problem thread could be in any state: RUNNABLE, 
WAITING, BLOCKED, TIMED_WAITING

Challenge
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l Approach: If you can reproduce the resource deadlock 
– Take a thread snapshot shortly before the deadlock 
– Take another snapshot after the deadlock 
– Compare the two snapshots 

l Approach: If you are already deadlocked 
– Take a few thread snapshots and look for threads that do not 

move 

l It is useful to identify the resource that is being 
exhausted 

–  A good trick is via phantom references (beyond scope of this lab)

How To Solve Resource Deadlocks
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l We can also cause deadlocks waiting for resources 

l For example, say you have two DB connection pools 
– Some tasks might require connections to both databases 
– Thus thread A might hold semaphore for D1 and wait for 

D2, whereas thread B might hold semaphore for D2 and be 
waiting for D1 

l Thread dump and ThreadMXBean does not show 
this as a deadlock!

Resource Deadlocks
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public class DatabasePool { 
  private final Semaphore connections; 
  public DatabasePool(int connections) { 
    this.connections = new Semaphore(connections); 
  } 

  public void connect() { 
    connections.acquireUninterruptibly(); 
    System.out.println("DatabasePool.connect"); 
  } 

  public void disconnect() { 
    System.out.println("DatabasePool.disconnect"); 
    connections.release(); 
  } 
}

88Finding and Solving Java Deadlocks - ECESCON9 2016

Our Databasepool - Connect() And 
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DatabasePool.connect 
DatabasePool.connect 

89Finding and Solving Java Deadlocks - ECESCON9 2016

Threadmxbean Does Not Detect This 
Deadlock
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public class DatabasePool { 
  // ... 
   
  public void connect() { 
    connections.acquireUninterruptibly(); // line 12 
    System.out.println("DatabasePool.connect"); 
  } 
}

90Finding and Solving Java Deadlocks - ECESCON9 2016

Stack Trace Gives A Vector Into The 
Code
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Resource Deadlock
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– Start our modified Java2Demo 
– Connect JVisualVM  

and dump all threads 
– Use Java2Demo for a while 

until it deadlocks 
– Get another thread dump and  

compare to the first one 
• This should show you where  

the problem is inside your code 
– Fix the problem and verify that it has been solved 

• Hint: Your colleagues probably write code like this, but you 
shouldn't

Lab3 Exercise lab3/readme.txt 
http://tinyurl.com/deadlocks2016
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l Goal: Ensure that resources are released after use 

l Diff between the two thread dumps using jps and jstack 

– Fault is probably in our classes, rather than JDK

Lab3 Exercise Solution Explanation
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< at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(AbstractQueuedSynchronizer.java:2043) 
< at java.awt.EventQueue.getNextEvent(EventQueue.java:531) 
< at java.awt.EventDispatchThread.pumpOneEventForFilters(EventDispatchThread.java:213) 
--- 
> at java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt(AbstractQueuedSynchronizer.java:834) 
> at java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireSharedInterruptibly(AbstractQueuedSynchronizer.java:994) 
> at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireSharedInterruptibly(AbstractQueuedSynchronizer.java:1303) 
> at java.util.concurrent.Semaphore.acquire(Semaphore.java:317) 
> at eu.javaspecialists.deadlock.lab3.java2d.MemoryManager.gc(MemoryManager.java:56) 
> at eu.javaspecialists.deadlock.lab3.java2d.MemoryMonitor$Surface.paint(MemoryMonitor.java:153) 
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/** 
 * Only allow a maximum of 30 threads to call System.gc() at a time. 
 */ 
public class MemoryManager extends Semaphore { 
  private static final int MAXIMUM_NUMBER_OF_CONCURRENT_GC_CALLS = 30; 

  public MemoryManager() { 
    super(MAXIMUM_NUMBER_OF_CONCURRENT_GC_CALLS); 
  } 

  public void gc() { 
    try { 
      acquire(); 
      try { 
        System.gc(); 
      } finally { 
        System.out.println("System.gc() called"); 
        release(); 
      } 
    } catch (Exception ex) { 
      // ignore the InterruptedException 
    } 
  } 
}

94Finding and Solving Java Deadlocks - ECESCON9 2016

What Is Wrong With This Code?

Calling System.gc() is baddd (but not the problem)

Empty catch block hides problem
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Lab 4: Combining Your 
Skills

Avoiding Liveness Hazards
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l Problem: try to solve lab 4 using the skills learned 

l Be careful - it is not as easy as it looks :-) 

l http://tinyurl.com/deadlocks2016

Lab 4: Combining Your Skills
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Lab 5: Speeding Up 
Fibonacci
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l Number sequence named after Leonardo of Pisa 
– F0 = 0 
– F1 = 1 
– Fn = Fn-1 + Fn-2 

l Thus the next number is  
equal to the sum of the  
two previous numbers 

– e.g. 0, 1, 1, 2, 3, 5, 8, 13, 21, … 

l The numbers get large very quickly

Lab 5: Speeding Up Fibonacci
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l Taking our recursive definition 
– F0 = 0, F1 = 1 
– Fn = Fn-1 + Fn-2 

l Our first attempt writes a basic recursive function 

l But this has exponential time complexity 
– f(n+10) is 1000 slower than f(n)

First Attempt At Writing A Fibonacci Method
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public long f(int n) { 
  if (n <= 1) return n; 
  return f(n-1) + f(n-2); 
}
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l Instead of a recursive method, we use iteration: 

l This algorithm has linear time complexity 
– Solved f(1_000_000_000) in 1.7 seconds 

• However, the numbers overflow so the result is incorrect 
• We can use BigInteger, but its add() is also linear, so time is quadratic 
• We need a better algorithm

2nd Attempt at Coding Fibonacci
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public static long f(int n) { 
  long n0 = 0, n1 = 1; 
  for (int i = 0; i < n; i++) { 
    long temp = n1; 
    n1 = n1 + n0; 
    n0 = temp; 
  } 
  return n0; 
} 8
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l Dijkstra noted the following formula for Fibonacci 
– F2n-1 = Fn-12 + Fn2 

– F2n = (2 × Fn-1 + Fn) × Fn 

l Logarithmic time complexity and can be parallelized 
– Java 8 uses better BigInteger multiply() algorithms 

• Karatsuba complexity is O(n1.585) 
• 3-way Toom Cook complexity is O(n1.465) 
• Previous versions of Java had complexity O(n2) 
• Unfortunately multiply() in BigInteger is only available 

single-threaded - we’ll fix that in Lab 5.3

3rd Attempt Dijkstra's Sum of Squares
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l Implement this algorithm using BigInteger 
– F2n-1 = Fn-12 + Fn2 

– F2n = (2 × Fn-1 + Fn) × Fn 

l Run all tests in FibonacciTest and record the times 

l Do it yourself - no cheating with Google!

Lab 5.1: Dijkstra’s Sum Of Squares
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l We can parallelize by using common Fork/Join Pool 

l Next we fork() the 1st task, do the 2nd and then join 1st

Lab 5.2: Parallelize Your Algorithm
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private final class FibonacciTask extends RecursiveTask<BigInteger> { 
  private final int n; 
  private FibonacciTask(int n) { 
    this.n = n; 
  } 
  protected BigInteger compute() { 
    return f(n); 
  } 
}

  FibonacciTask fn_1Task = new FibonacciTask(n - 1); 
  fn_1Task.fork(); 
  BigInteger fn = f(n); 
  BigInteger fn_1 = fn_1Task.join();
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l Using principles from lab 5.2, parallelize methods in 
eu.javaspecialists.performance.math.BigInteger 

– multiplyKaratsuba() 
– multiplyToomCook3() 
– squareKaratsuba() 
– squareToomCook3()

Lab 5.3: Parallelize Biginteger
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l Dijkstra's Sum of Squares needs to work out some 
values several times.  Cache results to avoid this. 

l Make sure you implement a “reserved caching 
scheme” where if one thread says he wants to 
calculate some value, others would wait 

– e.g. have a special BigInteger that signifies RESERVED 
• First thing a task would do is check if map contains that 
• If it doesn’t, it puts it in and thus reserves it 
• If it does, it waits until the task is done and uses that value

Lab 5.4: Cache Results
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l ForkJoinPool is configured with desired parallelism 
– Number of active threads 
– ForkJoinPool mostly used with CPU intensive tasks 

l If one of the FJ Threads has to block, a new thread 
can be started to take its place 

– This is done with the ManagedBlocker 

l Change your cache to use ManagedBlocker to keep 
parallelism high

Lab 5.5: ManagedBlocker
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Wrap Up
Avoiding Liveness Hazards
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l Concurrency is difficult, but there are tools and 
techniques that we can use to solve problems 

l These are just a few that we use 

l For more information, have a look at  
– The Java Specialists' Newsletter 

• http://www.javaspecialists.eu 

l Made in Chania (mostly)

Conclusion On Deadlocks
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